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Abstract. We explore a possibility of optimization of the method of determination of the top-quark mass
from the Mb� distribution in semi-leptonic decays t → b �ν at the LHC and a future linear collider (LC).
We discover that the systematic and statistical errors of Mt determination can be diminished if considering
the high moments over the distribution. In the case of LHC this allows one to reduce the errors by more
than a factor of two, and in the case of LC to approach the precision expected by studying the threshold
scan of the total cross section e+e− → tt̄.

1 Introduction

The precision determination of the top-quark mass is one
of the major research problems at next-generation collid-
ers [1–5]. Being a fundamental parameter of the standard
model (SM), the top-quark mass is tightly constrained by
quantum-level calculations with other fundamental param-
eters. This enables one to test the SM and/or to select the
probable scenario of its extension on the basis of an inde-
pendent Mt measurement.

A considerable progress in this direction is expected at
Tevatron and LHC, where the accuracy of the Mt deter-
mination is anticipated of about 1–2 GeV [1]. At LHC in
view of the copious production of top quarks, to increase
accuracy, decreasing the systematic errors is crucial. An
analysis of [1] shows that the most promising method from
the point of view of optimization of the errors is based
on the investigation of a distribution over the invariant
mass of the observable products of semi-leptonic decays
t → bW → b �ν; more precisely of the isolated lepton � and
the µ+µ− pair indicating a J/ψ meson produced from the
decay of the b quark [6]. In this channel one can obtain ex-
perimentally very clean final states. Correspondingly, the
systematic error of the Mt measurement can be made low.
The evaluation made by Monte Carlo (MC) modeling gives
0.6–0.8 GeV at a statistical error of about 1 GeV for four
years of LHC operation [6]. This result is recognized as the
best among others obtained by various methods [1].

In the case of a future linear collider (LC) [2–5] the
most promising method for precise Mt determination is
based on the investigation of the threshold scan of the to-
tal cross section e+e− → tt̄. In this region the form and
height of the cross section are very sensitive to the mass
of the top quark. This gives an opportunity to determine
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Mt with very high accuracy. A serious difficulty in this ap-
proach is a precise theoretical calculation of the behavior
of the cross section in the vicinity of the threshold, which
becomes additionally complicated because of the resonant
effects due to the strong t–t̄ interaction. Major progress in
the calculations was made by way of the summation of QCD
contributions via solving the Lippmann–Schwinger equa-
tion for the Green function describing the tt̄ production [7].
At present the theoretical value of the top mass determined
by this method is estimated as 100–200 MeV [8,9], with an
experimental error of about 20 MeV [10].

Alternatemethods ofMt determination are based on the
reconstruction of top quark decay events. Their basic fea-
tures are common to LC and the hadron colliders, but at LC
the precision is anticipated to be better. Thus, for example,
the systematic error of Mt determination by direct recon-
struction of tt̄ events in e+e− collisions at

√
s = 500 GeV is

expected [11] to be equal to 340 and 250 MeV in hadronic
and semi-leptonic channels, respectively, with statistical er-
rors of about 100 MeV for 1–2 years of LC operation [12].
Since far above the threshold one can expect very high
precision of the necessary theoretical calculations, the re-
sultant errors should be close to that expected by studying
the threshold scan of the cross section. This promising an-
ticipation again excites a question about the precision of
the top mass determination by the method of [6], but this
time in the LC case. Actually this method in the LC case
has been discussed initially in [13] (see also the review [3]),
but the errors have not been determined. So the prospect
of this method at LC is still not known practically.

In this article we clear up this question. In contrast
to [6], however, we consider the full reconstructed jet of
the b quark instead of the J/ψ or µ+µ− pair only. Such an
approach has been considered in [13], and partially in [14].
We follow it by keeping in mind that the Mb� distribution
in any case does emerge in a certain stage of the analysis.
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So from the very beginning the analysis can be made in
terms of the data converted to the form ofMb� distribution.
(Of course, the systematic errors that arise in the course
of converting the data must be taken into account.) An
obvious advantage of this approach is the possibility to
consider the data in a uniform fashion in both the LHC
and LC cases. Moreover, this allows us in a simple way
to explore the possibility of optimizating the algorithm
used for the extraction of the top mass from the data. The
elaboration of the latter problem is actually the major
purpose of the present article.

In the next section we detail the statement of the prob-
lem. In Sects. 3 and 4 we discuss a model for the calculation
of the errors. The parameters of the model are fixed in
Sect. 5 and the quantitative outcomes are determined. In
Sect. 6 we discuss the theoretical uncertainty, and in Sect. 7
we discuss the results.

2 Statement of the problem

We consider the processes

e+e− (qq̄, gg) → tt̄ → bW bW → b�ν bq1q2

→ {b-jet + �} + {3 jets} , (1)

with the b-jet, isolated lepton � = {e, µ}, and a neutrino
that is invisible in the final states coming from one t quark,
and the remaining three jets coming from another t quark.
In the experiment these states are registered, and measured
in a distribution

F (q) =
1
σ

dσ
dq

. (2)

Here σ is the cross-section of the process (1), q ≡ Mb� is
the reconstructed invariant mass of the system {b-jet+ �}.

We simulate the results of the experiment under the
following suppositions. First we suppose that there is a
satisfactory method for extracting signal from the data.
Actually this means the existence of a satisfactory model
for the background processes that survive after setting of
kinematic cuts.1 Furthermore, we describe the signal in the
Born approximation, identifying the b-jet with the b quark.
Finally, on the basis of the results of [6], we disregard the
effects of the finite width of the top quarks. The latter as-
sumption means that σ−1 dσ/dq is equal to Γ−1

b�ν dΓb�ν/dq,
where Γb�ν is a partial width of the decay t → b�ν. (Thus
the distribution F becomes process-independent.)

Direct calculation gives the following formula for the
distribution of the partial width:

dΓb�ν
dq2

=
3GF |Vtb|2

4
√

2π2

ΓW→�νMW

M3
t

{
q2 − Λ2 −M2

W

1 The set of the cuts and the background processes in the
LHC case have been discussed in [6]. In the LC case that
has been done in [11, 12]. At this stage we do not take the
kinematic cuts manifestly into account but do so on deriving
the quantitative outcomes.
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Fig. 1. The distribution F (q) = Γ −1 dΓ/dq, q ≡ Mb�, at Mt =
170, 175, and 180 GeV
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Here Λ2 = M2
t −M2

W , ΓW is the total and ΓW→�ν is the
partial width of the W boson, and we neglect the masses
of the lepton � and the b quark.2 In this approximation
ΓW→�ν = 2/9ΓW and q ranges between 0 and Mt. Fig-
ure 1 shows the distribution F (q) defined by formula (3)
at Mt = 170, 175, 180 GeV. From Fig. 1 the dependence of
F (q) on Mt is obvious. So, by comparing the experimen-
tal distribution with a set of theoretical curves one can
determine, in principle, the experimental value of Mt.

In a practical respect, however, it is convenient to com-
pare integrated parameters of the distributions. For in-
stance, in [6] the Mt was extracted from the mean value
(position of the maximum) of the Gaussian distribution ap-
proximating the measured distribution. [13,14] determined
Mt by the first moment 〈 q 〉 over the distribution. In the
present article we consider a method of Mt determination
by the higher moments

〈qn〉 =
∫ M

0
dq qnF (q) . (4)

HereM is a fixed quantity close toMt, see below for details.
In fact this method means the matching of the experimen-
tal distribution qnF (q) with the corresponding theoretical
distribution which depends on the parameter Mt.

As we will see below, the insertion of the qn factor will
significantly increase the precision of theMt determination.
Eventually this can be checked by a quantitative analysis.
Nevertheless some hints on this can be seen a priori. Really,
with increasing n the moment 〈qn〉 becomes increasingly

2 The influence of the mass of the b quark is noticeable at
very small q, but this region is inessential when considering the
moments over the distribution.
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dependent on the behavior of F (q) in a region located
between the position of its maximum and a large-q tail
where F (q) almost vanishes. (More precisely, by the tail
we mean the range Λ < q < Mt, where in the limit ΓW = 0
the distribution identically vanishes for kinematic reasons.)
Further, in the mentioned region the behavior ofF (q) in the
greatestmeasure is sensitive to the value ofMt, which is seen
from Fig. 1. As a result, with increasing n the sensitivity of
〈qn〉 with respect to Mt is increasing. That is why one can
expect increased precision for the value of Mt extracted
from the higher moments.

Now let us dwell on the details of the definition (4). The
point of the discussion is the upper limit in the integral. We
set it to M instead of conventional Mt, meaning the upper
bound of the region allowed by kinematics, because Mt

is also a parameter, which is subject to determination. To
avoid an inconvenience, we use for the upper limit a certain
predetermined value M fixed close to Mt. Simultaneously
we adjust the normalization of the distribution F (q) so as
to satisfy the equality 〈1〉 = 1. The moments 〈qn〉 at n ≥ 1
after this redefinition practically do not change (for values
of n that are not large) in view of the almost vanishing F
in the tail at large q.

So, we define the experimentally measured value of the
top-quark mass as a solution to the equation

〈qn〉 = 〈qn〉exp . (5)

Here in the right-hand side the moment is determined (at
a given M) on the basis of the experimental data, and
that in the left-hand side on the basis of the theoretical
distribution, which depends on the parameter Mt. Let, for
a given n, a solution to (5) be Mt = Mt(n). Then the error
of the solution can be determined as

∆Mt(n) = ∆〈qn〉exp

/
d〈qn〉
dMt

∣∣∣∣∣
Mt=Mt(n)

. (6)

Our aim is to estimate∆Mt(n) and find an optimal value of
n which would minimize∆Mt(n). Since by virtue of (3) the
derivative d〈qn〉/dMt is known, the problem is reduced to
the determination of the statistical and systematic errors,
the components of the experimental error ∆〈qn〉exp.

3 Statistical errors

We determine the statistical errors of the moments on
the supposition that the data averaged over ensemble are
described by F (q) = Γ−1

b�ν dΓb�ν/dq with Γb�ν determined
by formula (3) at Mt = 175 GeV.

Let δqi be the size of a bin, within which the i-th element
of the distribution is measured, and let Ni be the number
of events counted in this bin on average. Then

F (qi)δqi = Ni /N , (7)

where N is the total number of events counted in all the
bins on average. Further, we do not distinguish between
N and N =

∑
iNi, the total number of events counted
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Fig. 2. The ratio ∆stat〈qn〉exp/〈qn〉exp depending on n (Mt =
175 GeV, N = 4000). The continuous curve represents the
results described by formula (10). The dashed curve represents
the results obtained by the method of effective moments

in all bins in the given experiment. The experimentally
measured n-th moment is

〈qn〉exp =
∑
i

qni
Ni
N

. (8)

By virtue of (7) the averaged experimental moment 〈qn〉exp
is found by formula (4). Since Ni is distributed by the
Poisson law with parameter Ni, the variance of 〈qn〉exp is

D〈qn〉exp =
∑
i

q2ni
Ni
N2 ≡ 1

N
〈q2n〉 . (9)

Formula (9) implies the following estimation for the sta-
tistical error:

∆stat〈qn〉exp =

√
1
N

〈q2n〉 . (10)

To give an idea of the behavior of ∆stat〈qn〉exp, we pre-
sent in Fig. 2 (continuous curve) the ratio ∆stat〈qn〉exp/
〈qn〉exp calculated at N = 4000 (corresponds to the LHC
case, see Sect. 5). It is seen from the figure that, with in-
creasing n, the ratio grows. This is explained by the shift (to
the right) of the position of the maximum of qnF (q) from
the position of the maximum of F (q), where the statistics
are largest. As a result the statistical reliability of 〈qn〉exp
decreases. Another important property of the ratio is the
change of the mode of the growth beginning with n ≈ 15.
This is explained by the emergence of a noticeable contri-
bution from the large-q tail in qnF (q). The latter property
is illustrated by the set of the curves represented by Fig. 3.

In fact the emergence of a noticeable contribution from
the tail is an undesirable effect since in the tail the uncer-
tainty from the background is comparable with the signal
process. To avoid this difficulty one can correct the defini-
tion of the moments by introducing a cut-off in the integral
in (4). The position of the cut-off should be determined so as
to isolate the second (unphysical) peak in the tail of qnF (q)
but simultaneously to keep as much statistical significance
as possible of the sample events. It is clear that the optimal
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Fig. 3. The shape of the function qnF (q) at Mt = 175 GeV,
n = 1, 5, 15, 40 (in arbitrary normalization)

cut-off should be placed in the neighborhood of a local min-
imum between the two peaks of qnF (q) (if the second peak
appears). From Fig. 3 it is seen that at n ≈ 40 the sought
point is about two half-widths to the right of the maximum
of qnF (q). So a simplified algorithm for the cut-off may
be determined by setting Λn = min{qn extr +2Γn right,M},
where qn extr is the position of the maximum of qnF (q) and
Γn right is the half-width from the right. Thus we come to
the following definition of the effective moments:

〈qn〉eff =
∫ Λn

0
dq qnF (q)

/∫ Λn

0
dq F (q) . (11)

In the experimentally determined effective moments
the cut-off must be the same. Ultimately ∆stat〈qn〉effexp is
defined by formula (10) with 〈q2n〉 replaced by 〈q2n〉eff
with the introduction of the cut-off Λn instead of Λ2n. The
latter anomalous prescription follows immediately from the
derivation of the formula (10).

The behavior of ∆stat〈qn〉effexp/〈qn〉effexp is shown by the
dashed curve in Fig. 2. It is seen from the figure that the
transition to the effective moments implies no noticeable
modification up to n ≈ 15, while at larger n the growth
of the ratio stabilizes. A similar behavior is observed in
the basic formalism (without the transition to the effective
moments) in the limit ΓW → 0, when the large-q tail
identically vanishes.

4 Systematic errors

Proceeding to the systematic errors it is necessary first
to clarify their origin. For this purpose we use the analy-
sis of [6] of the errors of the MJ/ψ� distribution simulated
with the PYTHIA and/or HERVIG event generators. For
the main sources of the systematic errors [6] found the
uncertainties in the b-quark fragmentation (including the
final-state radiation) and uncertainties in the background
processes. It is clear that the same sources should be the
main ones when solving the inverse problem, the determi-
nation of theMb� distribution from theMJ/ψ� distribution,
which is considered virtually to be the data. In the LC case
we expect the same sources of systematic errors.

On this basis we consider first the error resulting from
the uncertainty in the b-quark fragmentation. For brevity
we call this the type I error. At the level of the Mb� dis-
tribution it appears as the uncertainty in the bin number
in which the number of events, Ni, is measured. In the
continuous case this error becomes the uncertainty ∆q in
the determination of the q variable.

Suppose that ∆q is sufficiently small. Then, neglecting
the nonlinear effects, we have

∆sys I〈qn〉exp =
∫ M

0
dq [qnF (q)]′ ∆q . (12)

Here the prime means a derivative with respect to q. The
systematic error I of the effective moment 〈qn〉effexp is esti-
mated similarly, by replacing the upper bound M by Λn
and then dividing the result by the normalization factor,
as in formula (11). The normalization factor itself should
be the same, as it controls the total number of events that
are taken into consideration when determining the effec-
tive moment.

We carry out the determination of ∆q with the aid
of the following reasoning. First we note that the invari-
ant mass q2 is actually the doubled scalar product of the
4-momenta of the b quark and the lepton �. So in the labo-
ratory frame it can be represented as q2 = EbK, where Eb
is the energy of the b quark, and K is a factor proportional
to the energy of the lepton �. (Additionally K includes a
dependence on angular variables which, however, is rela-
tively weak.) Furthermore, by calculating the differential
we obtain ∆q = 1

2 (∆Eb/Eb +∆K/K) q, where ∆Eb and
∆K are the corresponding errors. A more precise estima-
tion is determined by the sum of the quadratures. Thus we
arrive at a linear dependence with a certain coefficient r,

∆q = r q , r =
1
2

[(
∆Eb
Eb

)2

+
(
∆K

K

)2
]1/2

. (13)

The systematic error arising after subtraction of the
background we call the type II error. This appears in the
absolute value of the distribution function. So it should be
described as an additive contribution δF to the function
F . Correspondingly, we obtain the following formula for
the type II error of the moments:

∆sys II〈qn〉exp =
∫ M

0
dq qn δF (q) . (14)

The type II error of the effective moments 〈qn〉effexp is defined
by a similar formula with the modifications listed below
(12).

It is reasonable to determine δF (q) under the supposi-
tion that it vanishes at the boundaries of phase space, and
that when passing from small q to large q it changes sign
only once. The simplest form of a function satisfying these
requirements is a third-degree polynomial,

δF = h q (q −M/2) (q −M). (15)

The parameter h in (15) describes the amplitude of the
error and is subject to further determination.
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5 Numerical results

We assign the following values for the parameters with
global meaning:

MW = 80.4 GeV, ΓW = 2.1 GeV, Mt = M = 175 GeV .
(16)

The remaining parameters N , r, and h depend on the
conditions under consideration. Recall that N means the
volume of the representative sample of events, the param-
eter r characterizes the error in the invariant mass of the
b� system, and h describes the error arising after the sub-
traction of the background processes.

With reference to the LHC case, we fix the parameters
N , r and h on the basis of the results of [6]. Since in that
work the MJ/ψ� distribution was determined at N = 4000
(with kinematic cuts and for four years of LHC opera-
tion), in our investigation we set this value for N , as well.
We fix the parameters r and h based on the properties
of the MJ/ψ� distribution and the direct results derived
in [6] from these properties. First we use the estimation
∆sys〈MJ/ψ�〉 = +0.3/ − 0.4 GeV and the result derived
from this ∆Mt = +0.6/−0.8 GeV. Considering the frame-
work of our investigation, and the latter quantity as the
uncertainty of the input parameter Mt, we get by direct
calculation ∆sys〈q〉exp = +0.47/ − 0.62 GeV. By compar-
ing this with ∆sys〈MJ/ψ�〉 we obtain an energy scale factor
of 1.6, which describes the spreading of the MJ/ψ� distribu-
tion when converting it to the Mb� distribution. Using the
mentioned factor, from ∆sys II〈MJ/ψ�〉exp � 0.15 GeV [6]
we further derive an estimation ∆sys II〈q〉exp � 0.24 GeV.
From this result and the relations (14) and (15) we get
h � 1.7 × 10−10 GeV−4. (Hereinafter we take the upper
bounds as the estimations.)

Knowing ∆sys〈q〉exp and ∆sys II〈q〉exp, we immediately
get∆sys I〈q〉exp � +0.41/−0.57.Fromhere and the formula
(12) it follows that r � 0.004–0.006;weuse the average value
r = 0.005. It is worth noticing that the same estimation for
r follows from formula (13) when taking into consideration
the 1% precision of the determination of the energy of the
b jets expected at LHC [1], and additionally neglecting
∆K/K compared to ∆Eb/Eb.

Now, as we know N , r, h, we can calculate∆stat〈qn〉exp

and ∆sys I,II〈qn〉exp at any n. So we calculate ∆statMt(n)
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Fig. 4. The statistical error ∆statMt(n) as a function of n. The
dashed curve represents the results obtained by the method of
effective moments. The left and right vertical axes are in GeV
for the results from the LHC and LC, respectively
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Fig. 5. A repeat of Fig. 4 for ∆sys IMt(n)

and ∆sys I,IIMt(n). The dependence on n of these errors
is shown by the solid lines on Figs. 4–6. The dashed lines
show the errors obtained by the method of effective mo-
ments. (The break of the slope in the dashed line in Fig. 5
is explained by the change of the sign in the integral in
formula (12) appearing after introducing the cut-off Λn.)
In Table 1 we present the numerical results at some n and
the summed-quadrature errors ∆sysMt(n) and ∆Mt(n). It

Table 1. Statistical, systematic I and II, and the systematic summed-
quadrature errors, presented in GeV for the LHC case. The last column
represents the sum of the statistical and the systematic errors. In the brackets
we show the results calculated by the method of effective moments (if they
are different with the results calculated by the basic method)

n ∆statMt(n) ∆sys IMt(n) ∆sys IIMt(n) ∆sysMt(n) ∆Mt(n)

1 2.07 0.62 0.30 0.69 2.18

5 0.62 0.13 0.20 (0.17) 0.24 (0.21) 0.66

10 0.45 0.07 (0.06) 0.20 (0.13) 0.21 (0.14) 0.50 (0.48)

15 0.41 (0.40) 0.05 (0.03) 0.24 (0.12) 0.24 (0.12) 0.48 (0.42)

20 0.42 (0.39) 0.03 (0.00) 0.32 (0.11) 0.32 (0.11) 0.52 (0.40)

30 0.59 (0.38) 0.02 (0.03) 0.63 (0.11) 0.63 (0.11) 0.86 (0.39)
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Table 2. The same as in Table 1 in the LC case

n ∆statMt(n) ∆sys IMt(n) ∆sys IIMt(n) ∆sysMt(n) ∆Mt(n)

1 0.80 0.17 0.19 0.26 0.84

5 0.24 0.04 0.13 (0.11) 0.13 (0.12) 0.27

10 0.17 0.02 0.13 (0.09) 0.13 (0.09) 0.27 (0.20)

15 0.16 0.01 0.15 (0.08) 0.15 (0.08) 0.22 (0.17)

20 0.16 (0.15) 0.01 (0.00) 0.21 (0.07) 0.21 (0.07) 0.26 (0.16)

30 0.23 (0.15) 0.01 0.41 (0.07) 0.41 (0.07) 0.46 (0.16)
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Fig. 6. A repeat of Fig. 4 for ∆sys IIMt(n)

should be noted that at n = 1 the systematic errors in
Table 1 practically coincide with those in [6]. The reason
is that we have fixed the parameters of the current model
by matching the errors of the first moments.

In the LC case, unfortunately, there are no published
results that would allow us in a similar way to fix the
parameters of the model. Therefore we mainly make use
of indirect methods. We fix the parameter N according
to the following reasoning. First we note that σ(e+e− →
tt̄) ≈ 0.6 pb at

√
s = 500 GeV. So, at an integrated lumi-

nosity of 300 fb−1, corresponding to 1–2 years of running,
approximately 180 000 tt̄ pairs must be generated. Since
the branching of the process (1) is close to 30%, only 54 000
tt̄ events relate to our investigation. The efficiency of their
detection we estimate as follows. Suppose that at LC the
detection efficiency of W -pairs decaying in a semi-leptonic
channel will be the same as at LEP2, that is ∼ 80% [15]. In
addition, following [3], we suppose that the b-jet tagging
efficiency at LC will be about 80%. In summary this gives
an acceptance of 50%, which implies N = 27 000.

We fix the parameter r based on the systematic error of
Mt obtained in [11] in the direct reconstruction approach
of tt̄ events in the semi-leptonic channel. Additionally we
use the note that, in the kinematic range near the upper
Mb� endpoint, the neutrino practically does not contribute
to the total invariant mass of the decay products of the top
quark. Therefore the determination of the Mt in the men-
tioned range is practically the same as the determination of
the Mb� invariant mass. [11] obtained ∆sysMt = 250 MeV.
So we set ∆sysMb� = 250 MeV. Assuming that this is the
type I error, we equate ∆q to this value. Finally, by setting
∆q = rq, q � Mt we get r = 0.0014.

We fix the parameter h by proceeding according to [6],
based on the decreasing systematic type II error for the
average 〈MJ/ψ�〉 below 0.1 GeV for increasing statistics up
to N ∼ 104. Applying the method above to this, we obtain
a rough estimate h � 1.1 × 10−10 GeV−4.

Knowing N , r, h, we find ∆stat〈qn〉exp, ∆sys I,II〈qn〉exp

and then ∆statMt(n), ∆sys I,IIMt(n). Since in our model
the pattern of the dependence on n is the common one
in the LC and LHC cases, the difference between these
cases appears in the scales of the errors only. This allows
us to present the results on Figs. 4–6 by adding new scales.
The numerical results are presented in Table 2. It is in-
teresting to note that ∆sys IMt(1) turns out to be smaller
than the ∆sysMt obtained in [11] in the framework of the
direct reconstruction of events. Nevertheless this does not
lead to an inconsistency. In fact, we equate the ∆sysMt

of [11] to ∆q at q � Mt, but the dominant contributions
to ∆sys I〈q〉exp are formed at strictly smaller q than Mt,
which is obvious from formulas (12) and (13). This effect
decreases ∆sys IMt(1) compared to the ∆sysMt of [11].

6 Theoretical uncertainty

The analysis of the previous sections shows that the exper-
imental accuracy of theMt determination can be consider-
ably improved by moving to high degrees of the moments.
So, to achieve an eventual high accuracy the theoretical
uncertainty becomes increasingly crucial. In this regard it
is important to understand whether the theoretical error
in the determination of Mt can be made smaller than the
experimental error for high degrees of the moments. If this
will be possible then the theoretical error will not spoil
the expected accuracy. Below we discuss this question in
a somewhat qualitative manner since the possibility of a
solution is of initial importance.

Let us begin with the observation that the origin of the
theoretical uncertainty in the Mt determination is con-
nected with the uncertainty of the calculation of the the-
oretical moment 〈qn〉 in (5). Furthermore, in the deter-
mination of ∆Mt(n) the corresponding error ∆th〈qn〉 is to
be added (in quadratures) to ∆〈qn〉exp in formula (6). So
the problem is reduced to the question of the possibility
of carrying out the calculations precisely enough that the
error ∆th〈qn〉 is smaller than ∆〈qn〉exp.

In practice it is convenient to compare relative errors
such as∆〈qn〉/〈qn〉 instead of the proper errors∆〈qn〉. For-
tunately the experimental relative error ∆〈qn〉exp/〈qn〉exp
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grows as we move to higher degrees of the moments; its
behavior is similar to that represented in Fig. 2. In particu-
lar, when moving from n = 1 to n = 15, ∆〈qn〉exp/〈qn〉exp
increases from 1.8% to 5.2%(4.5%) in the LHC case, and
from 0.7% to 2.4%(1.9%) in the LC case. So with increas-
ing n the requirement for the theoretical relative error
∆th〈qn〉/〈qn〉 weakens.

Generally a theoretical error arises from a parametric
uncertainty and an intrinsic uncertainty in the calcula-
tion itself. The parametric uncertainty originates mainly
from the parameters that are least accurately known. In
the given case these are the widths of the W boson and
of the top quark. The analysis of [6] shows that the un-
certainties in these parameters practically do not affect
the first moment. Moreover, even switching-off the widths
gives a negligible effect. In the 15-th moment, varying ΓW
within the experimental error ∆ΓW = 0.04 GeV results in
∆〈q15〉/〈q15〉 = 0.09%(0.06%), which is also insignificant.
Unfortunately we cannot estimate the variance of the mo-
ments by varying the width of the top quark, since from
the very beginning we use the narrow-width approxima-
tion for the top quarks. Nevertheless, based on the results
of [6] we expect a negligible variance of the moments in
this case too. This is corroborated by the lack of reasons
leading to appreciably greater sensitivity of the moments
to the width of the top quarks than to the width of the
W boson.

It should be mentioned, however, that the complete
switching-off of the widths can vary the high-degree mo-
ments noticeably. Thus, setting ΓW = 0 implies a shift of
〈q15〉by 4.6%(3.2%),which can be comparedwith the above
estimations for the experimental relative errors. Thismeans
that the calculation of the high-degree moments must be
carried out while taking into consideration realistic values
for the widths. The latter requirement, of course, is unnec-
essary for the estimation of the errors only, which we are
investigating herein.

Now let us consider the errors of the calculation itself.
First we note that all the processes in (1) go far above
the thresholds of the production of unstable particles, the
W bosons and the top quarks. Therefore their production
and decay can be described by standard methods [16],
namely with the Dyson resummation in the leading-order
calculation and the pole approximation when calculating
the perturbation-theory corrections.3 Thus, the problem is
reduced to the estimation of the order of the perturbation
theory that is necessary to satisfy the required precision
of the calculation.

Further we note that the corrections to the moments
will be calculated by calculating the corrections to the
distribution F (q). For kinematic reasons the basic features
of the behavior of the latter corrections should follow the
behavior of the distribution. Namely,∆thF (q) must vanish
at the ends of the kinematic region because of the vanishing
phase volume. Furthermore, ∆thF (q) must almost vanish
on the tail at large q due to the small size of the width of the

3 As variants, one can exploit the method of effective field
theory for calculating the resonant processes [17] or the modified
perturbation theory based on distribution theory [18,19].

W boson. (Recall that, in the limitΓW = 0, the distribution
is completely suppressed on the tail for kinematic reasons.)
So ∆thF (q) must be precisely known mainly in the middle
of the kinematic region but not near its ends, including the
tail. When going to the high-degree moments this condition
is maintained. Moreover, in some sense it even becomes
stronger. Really, at low q the contributions to the moments
are additionally suppressed by the factor qn. At large q,
in the case of the effective moments, the contributions are
completely suppressed by the cut-off Λn. In addition, the
larger n is, the larger the distance between the cut-off and
Mt, the right boundary of the actual range of the kinematic
variable (since Λn → Λ from the right as n → ∞). In
particular, Λ1 = 171 GeV but Λ15 = 160 GeV, which is
15 GeV away from Mt. This feature is valuable for our
investigation as the cut-off of the ends of the region of
the kinematic variable implies a suppression of the large
logarithms that can arise near the ends when calculating
perturbation-theory corrections. In the final analysis this
allows us to use the naive counting method to estimate
corrections to the moments.4

With this in mind we use a rather rough approach that
is based on a comparison between the corrections to the
moments and the width of the top quark. (Notice that the
width is actually the zero moment, accurate to the normal-
ization.) The key reason for the approach is the observation
that the integrals for the moments and the width, and for
the corrections to the moments and the width, accumu-
late contributions mainly from the middle region of the
kinematic variable. So, supposing that in this region the
correction to the distribution∆thF (q) varies weakly in the
units of F (q), one can expect that the corrections to the
moments and to the width should be close to each other in
relative units. By closeness here we mean on the order of
several units. It is worth mentioning that, even in the case
of the experimental errors, which depend strongly on the
shape of the distribution, the relative errors at n = 1 and
n = 15 only differ from each other by a factor of 2.5–3.5.

As we know, the electroweak one-loop correction to the
top-quark width amounts to approximately 2%. The QCD
one-loop correction is near 10%, while the two-loop cor-
rection is near to 2%. (See [1] and the references therein.)
The comparison of these values with the estimates above
for the experimental relative errors demonstrates that the
one-loop electroweak and two-loop QCD corrections are
enough to remain within the required limits (for both the
LHC and LC cases). It should be noted that these correc-
tions to the distribution can certainly be calculated since
the corrections to the width have been calculated. Finally
we also note that only the direct calculations of these cor-
rections can explicitly solve the problem of the theoretical
errors to the moments.

4 It should be emphasized that we discuss here the corrections
to the t → b transition but not to the b-quark fragmentation,
including the perturbative fragmentation. The latter process
is described by the convolution of the cross section with the
fragmentation function, and this operation is to be fulfilled in
the framework of MC event generators.
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The mentioned calculation, however, would not yet en-
tirely close the problem of the theoretical error of the deter-
mination of Mt because of the problem of nonperturbative
nature caused by the renormalon contribution. Below, for
completeness, we only briefly consider this problem as its
solution is known, at least conceptually. The problem is
actually connected with the kind of the mass that is to be
determined through an experimental measurement. In fact
there are different masses, but only a Lagrangian mass is
ultimately valuable since only this mass can be constrained
by other fundamental parameters of the theory. The impor-
tant representatives of the Lagrangian mass are the pole
and MS masses. The directly measurable mass is the pole
mass, which is determined by the kinematics. Correspond-
ingly, the algorithms currently used to extractMt from the
data are tuned to the pole mass. However, because of the
renormalon contribution pole-mass determination faces an
extra uncertainty of order O(ΛQCD) [20]. Numerically this
can amount to hundreds of MeVs.

This difficulty can be bypassed in the framework of
the following algorithm (below we state one of its possible
variants) [20]. First, all theoretical calculations are to be
fulfilled in terms of the pole mass. Then the value of the
pole mass is to be determined from matching with the data.
Remember, at this stage the result includes the renormalon
contribution. Further, by means of the well-known formula
relating the pole mass to the MS mass (see [1], for example),
the MS mass is determined. At this step the result again
contains the renormalon contribution but, as is declared,
this cancels the previous one. (So the inaccuracy in the
relation between the pole and MS masses is charged to the
pole mass.) Direct calculations in certain examples [8, 9]
demonstrate the effectiveness of this algorithm.

So, the problem is initially stated as though for the
pole-mass determination, but at the final stage the MS
mass is determined. This allows one to avoid a theoretical
systematic uncertainty of order of O(ΛQCD) caused by the
renormalon contribution. Returning to our results, we see
that the theoretical error of the top-mass determination
can really be made smaller than the experimental error.

7 Discussion

The major result of this article is the detection of the
effect of decreasing the statistical and systematic errors of
the top-quark mass measured from the Mb� distribution,
when applying the technique of moments and proceeding
to moments of high degree. The optimal value of the degree
that minimizes the errors is found to be near n = 15.

To determinate the errors we have used a simple model.
Its parameters in the LHC case have been fixed on the
basis of the results obtained earlier [6] by the MC modeling
method. As applied to LC the parameters have mainly been
fixed by indirect methods. Knowing the parameters and
their dependence on the degree n of the moments, we have
estimated the errors as a function of n and have found the
optimal value of n that minimizes the errors. The optimal
value n = 15 is clearly visible in the framework of the

basic method of calculating the moments. The application
of the technique of effective moments decreases the errors
at n = 15 by 10–20%, but further increases of n practically
do not vary the results (see Figs. 4–6 and Tables 1–2).

At the optimal value n = 15 the total error ∆Mt is
found to be close to 500 MeV in the LHC case, and close
to 200 MeV in the LC case. In the LHC case this accuracy
is more than twice that obtained by the other methods [1],
including the original method in [6]. In the LC case the
estimated accuracy of theMt determination is close to that
expected by scanning the tt̄ production threshold [8, 9].

In conclusion it should be mentioned, once again, that
at the intermediate stage of the analysis we have introduced
simplifications that allow us to minimize the calculations.
However at the final stage all the estimations have been
made on the basis of realistic values of the parameters. This
peculiarity should not reduce the legitimacy of the detected
behavior of the errors and, moreover, of their estimations.
Nevertheless the quantitative outcomes could be improved
by further calculations based on the direct application of
a proper MC event generator.
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